Blog For QA Only

Table of contents

Key Points

Blog For QA Only
00:00
/
00:00

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Paragraph Text: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Quote Text: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat

Text with links: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat

Test text

  1. Item 1
  2. Item 2
  3. Item 3

Test Text

  • Item 1
  • Item 2
  • Item 3
Factor SFT RLHF
Data Requires large, high-quality, labeled datasets. Reduces dependency on labeled data by using dynamic feedback. Reduces dependency on labeled data by using dynamic feedback.
Task complexity Well-suited for static, well-defined tasks with clear input-output mappings. Ideal for complex tasks requiring adaptability, exploration, or complex reasoning. Ideal for complex tasks requiring adaptability, exploration, or complex reasoning.
Adaptability Limited; requires retraining for new tasks or changing requirements. High; adapts dynamically to feedback and changing objectives. High; adapts dynamically to feedback and changing objectives.
Generalization Can struggle to generalize to unseen tasks or domains if the training data is not sufficiently diverse. Promotes better generalization by exploring diverse outputs and optimizing based on feedback.
Implementation complexity Easier to set up and implement. More complex to set up, requires RL expertise and infrastructure.
Computational resources More computationally efficient, especially when labeled data is readily available. Computationally intensive due to iterative training processes and the need for high-performance hardware.
When to use Use when you can access substantial labeled data and the task is clearly defined and static. Use when you need adaptability, have complex objectives, and can incorporate human preferences or feedback.

Paragraph Text: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Book a demo

We’ll walk you through what’s possible. No pressure, no jargon — just answers.
Book a demo